Analysis of Ct Liver Images for Tumour Diagnosis Based on Clustering Technique and Texture Features
نویسنده
چکیده
The CAD system employs automatic tumor segmentation, texture feature extraction and characterization into Normal malignant and benign tumors. The CT liver image will be classified automatically by probabilistic neural network and texture features. The liver segmentation process will be done by region growing method. The fuzzy c means clustering is used here for effective segmentation to diagnose the tumor part. The morphological process will be used to avoid distortion from background and smoothing the region.
منابع مشابه
Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملDiagnosis of Liver Tumor from CT Images Using Fast Discrete Curvelet Transform
In this paper, a novel feature extraction scheme is proposed, based on multiresolution fast discrete curvelet transform for computer-aided diagnosis of liver diseases. The liver is segmented from CT images using adaptive threshold detection and morphological processing. The suspected tumour region is extracted from the segmented liver using FCM clustering. The textural information obtained from...
متن کاملAutomated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy
Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...
متن کاملClassification of CT liver images using local binary pattern with Legendre moments
Liver cancer leads to more number of human deaths nowadays. Patient survival chances can be increased by early detection of the tumour. Texture analysis based on moment features for CT liver scan images is proposed here. The texture feature is extracted by local binary pattern and statistical features are extracted by Legendre moments. This communication presents a comparative analysis between ...
متن کاملTexture analysis of the ovarian lesions by CT scan images
Introduction: To explore diagnostic potential of computerize texture analysis methods in discrimination of the normal, benign and malignant ovarian lesions by CT scan imaging. Materials and Methods: Ovarian CT image database consists of 10 normal, 10 benign and 3 malignant which were reported by radiologist and proven by clinical examinat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015